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ABSTRACT

We present an algorithm to construct meshes suitable for space-time discontinuous Galerkin �nite-element methods.
Our method generalizes and improves the `Tent Pitcher' algorithm of �Ung�or and She�er. Given an arbitrary
simplicially meshed domain X of any dimension and a time interval [0; T ], our algorithm builds a simplicial mesh of
the space-time domain X � [0; T ], in constant time per element. Our algorithm avoids the limitations of previous
methods by carefully adapting the durations of space-time elements to the local quality and feature size of the
underlying space mesh.
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1. INTRODUCTION

Many simulation problems consider the behavior of an
object or region of space over time. The most common
�nite element methods for this class of problem use
a meshing procedure to discretize space, yielding a
system of ordinary di�erential equations in time. A
time-marching or time-integration scheme is then used
to advance the solution over a series of �xed time steps.
In general, a distinct spatial mesh may be required at
each time step, due to the requirements of an adaptive
analysis scheme or to track a moving boundary or
interface within the domain.

A relatively new approach to such simulations sug-
gests directly meshing in space-time [9, 16, 22]. For
example, a four-dimensional space-time mesh would
be required to simulate an evolving three-dimensional
domain. Usually, the time dimension is not treated
in the same way as the spatial dimensions, in part
because it can be scaled independently. Moreover,

the numerical methods that motivate our research
impose additional geometric constraints on the meshes
to support a linear-time solution strategy. Thus,
traditional meshing techniques do not apply.

In this paper, we develop the �rst algorithm to build
graded space-time meshes over arbitrary simplicially
meshed domains in arbitrary dimensions. Our algo-
rithm does not impose a �xed global time step on
the mesh; rather, the duration of each space-time
element depends on the local feature size and quality
of the underlying space mesh. Our approach is a
generalization of the `Tent Pitcher' algorithm of �Ung�or
and She�er [19], but avoids the restrictions of that
method by imposing some additional constraints. Our
algorithm builds space-time meshes in constant time
per element.

The paper is organized as follows. In Section 2,
we formalize the space-time meshing problem and
describe several previous results. Section 3 explains
the high-level advancing front strategy of our meshing



Figure 1. A space-time discontinuous Galerkin �nite element mesh.

algorithm. In Sections 4 and 5, we develop our
algorithm for building three-dimensional space-time
meshes over triangulated planar domains. We general-
ize our algorithm to higher dimensions in Section 6. In
Section 7, we describe our implementation and present
some experimental results. Finally, we conclude in
Section 8 by suggesting several directions for further
research.

2. SPACE-TIME DISCONTINUOUS
GALERKIN MESHING

The formulation of our space-time meshing problem
relies on the notions of domain of inuence and domain
of dependence. Imagine dropping a pebble into a
pond; over time, circular waves expand outward from
the point of impact. These waves sweep out a cone in
space-time, called the domain of inuence of the event.

More generally, we say that a point p̂ in space-time de-
pends on another point q̂ if the salient physical param-
eters at p̂ (temperature, pressure, stress, momentum,
etc.) can depend on the corresponding parameters at q̂,
that is, if changing the conditions at q̂ could change the
conditions at p̂. The domain of inuence of p̂ is the set
of points that depend on p̂; symmetrically, the domain

of dependence is the set of points that p̂ depends
on. At least in�nitesimally, these domains can be
approximated by a pair of circular cones with common
apex p̂. For isotropic problems without material ow,
this double cone can described by a scalar wave speed

c(p̂) 2 IR, which speci�es how quickly the radius of the
cones grows as a function of time. If the characteristic
equations of the analysis problem are linear and the

material properties are homogeneous, the wave speed
is constant throughout the entire space-time domain;
in this case, we can choose an appropriate time scale so
that c(p̂) = 1 everywhere. For more general problems,
the wave speed varies across space-time as a function
of other physical parameters, and may even be part of
the numerical solution.

These notions extend to �nite element meshes in
space-time. We say that an element 4 in space-time
depends on another element 40 if any point p̂ 2 4
depends on any point q̂ 2 40. This relation naturally
de�nes a directed dependency graph whose vertices are
the elements of the mesh. Two elements in the mesh
are coupled if they lie on a common directed cycle in
(the transitive closure of) the dependency graph.

Space-time discontinuous Galerkin (DG) methods
have been proposed by Richter [12], Lowrie et al. [9],
and Yin et al. [22] for solving systems of nonlinear
hyperbolic partial di�erential equations. These
methods provide a linear-time element-by-element
solution, avoiding the need to solve a large system of
equations, provided no two elements in the underlying
space-time mesh are coupled. In particular, every
pair of adjacent elements must satisfy the so-called
cone constraint : Any boundary facet between two
neighboring elements separates the cone of inuence
from the cone of dependence of any point on the
facet. See Figure 2. Intuitively, if a boundary facet
satis�es the cone constraint, information can only
ow in one direction across that facet. In a totally
decoupled mesh, the dependency graph describes a
partial order on the elements, and the solution can
be computed by considering the elements one at a



time

F
ig
u
re

2
.
T
h
e
co
n
e
co
n
stra

in
t:

A
n
y
b
o
u
n
d
ary

fa
cet

sep
ara

tes
th
e
d
o
m
a
in

o
f
in

u
en

ce
(a
b
o
ve)

fro
m

th
e
d
o
m
a
in

o
f
d
ep

en
-

d
en

ce
(b
elow

).

tim
e
a
cco

rd
in
g
to

a
n
y
lin

ea
r
ex
ten

sio
n
o
f
th
is
p
a
rtia

l
o
rd
er.

A
ltern

a
tiv

ely,
th
e
so
lu
tio

n
s
w
ith

in
a
n
y
set

o
f

in
co
m
p
a
ra
b
le
elem

en
ts

ca
n
b
e
co
m
p
u
ted

in
p
a
ra
llel.

D
isco

n
tin

u
o
u
s
G
a
lerk

in
m
eth

o
d
s
im

p
o
se

n
o
a
p
rio

ri

restrictio
n
s
o
n
th
e
sh
a
p
e
o
f
th
e
in
d
iv
id
u
a
l
elem

en
ts;

m
ix
ed

m
esh

es
w
ith

tetra
h
ed
ra
l,
h
ex
a
h
ed
ra
l,
p
y
ra
m
i-

d
a
l,
a
n
d
o
th
er

elem
en
t
sh
a
p
es

a
re

a
ccep

ta
b
le.

H
ow

-
ev
er,

it
is
u
su
a
lly

m
o
re

co
n
v
en
ien

t
to

w
o
rk

w
ith

v
ery

sim
p
le
co
n
v
ex

elem
en
ts

su
ch

a
s
sim

p
lices.

E
x
p
erien

ce
in
d
ica

tes
th
a
t
ill-co

n
d
itio

n
in
g
is
lik
ely

if
th
e
elem

en
ts

a
re

n
o
n
-co

n
v
ex
,
a
n
d
su
b
d
iv
id
in
g
n
o
n
-co

n
v
ex

reg
io
n
s

in
to

sim
p
le

co
n
v
ex

elem
en
ts

is
u
sefu

l
fo
r
eÆ

cien
t

in
teg

ra
tio

n
.
(F
o
r
fu
rth

er
b
a
ck
g
ro
u
n
d
o
n
D
G
m
eth

o
d
s,

w
e
refer

th
e
rea

d
er

to
th
e
recen

t
b
o
o
k

ed
ited

b
y

C
o
ck
b
u
rn
,
K
a
rn
ia
d
a
k
is,

a
n
d
S
h
u
[6
],
w
h
ich

co
n
ta
in
s

b
o
th

a
g
en
era

l
su
rv
ey

[5
]
a
n
d
sev

era
l
p
a
p
ers

d
escrib

in
g

sp
a
ce-tim

e
D
G

m
eth

o
d
s
a
n
d
th
eir

a
p
p
lica

tio
n
s.)

T
o
co
n
stru

ct
a
n
eÆ

cien
t
m
esh

w
ith

co
n
v
ex

elem
en
ts,

w
e
h
av
e
fo
u
n
d
it

p
refera

b
le

to
rela

x
th
e
co
n
e
co
n
-

stra
in
t
in

th
e
fo
llow

in
g
w
ay.

W
e
co
n
stru

ct
a
m
esh

o
f
sim

p
licia

l
elem

en
ts,

b
u
t
n
o
t
a
ll
fa
cets

m
eet

th
e
co
n
e

co
n
stra

in
t.

In
stea

d
,
elem

en
ts
a
re

g
ro
u
p
ed

in
to

p
a
tch

es
(o
f
b
o
u
n
d
ed

size).
T
h
e
b
o
u
n
d
a
ry

fa
cets

b
etw

een
p
a
tch

es
b
y
d
e�
n
itio

n
sa
tisfy

th
e
co
n
e
co
n
stra

in
t,

so
p
a
tch

es
a
re

p
a
rtia

lly
o
rd
ered

b
y
d
ep
en
d
en
ce,

a
n
d
ca
n

b
e
so
lv
ed

in
d
ep
en
d
en
tly.

H
ow

ev
er,

th
e
in
tern

a
l
fa
cets

b
etw

een
sim

p
licia

l
ele-

m
en
ts
w
ith

in
a
p
a
tch

m
ay

v
io
la
te

th
e
co
n
e
co
n
stra

in
t.

T
h
u
s,

D
G

m
eth

o
d
s
req

u
ire

th
e
elem

en
ts

w
ith

in
th
e

p
a
tch

to
b
e
so
lv
ed

sim
u
lta

n
eo
u
sly.

S
in
ce

ea
ch

p
a
tch

co
n
ta
in
s
a
co
n
sta

n
t
n
u
m
b
er

o
f
elem

en
ts,

th
e
sy
stem

o
f
eq
u
a
tio

n
s
w
ith

in
it
h
a
s
co
n
sta

n
t
size,

w
h
ich

im
p
lies

th
a
t
w
e
ca
n
still

so
lv
e
th
e
u
n
d
erly

in
g
n
u
m
erica

l
p
ro
b
-

lem
in

lin
ea
r
tim

e
b
y
co
n
sid

erin
g
th
e
p
a
tch

es
o
n
e
a
t
a

tim
e.

R
ich

ter
[1
2
]
o
b
serv

ed
th
a
t
th
e

d
issip

a
tio

n
o
f
D
G

m
eth

o
d
s
in
crea

ses
a
s
th
e
slo

p
e
o
f
b
o
u
n
d
a
ry

fa
cets

d
ecrea

ses
b
elow

th
e
lo
ca
l
w
av
e
sp
eed

.
T
h
u
s,
o
u
r
g
o
a
l
is

to
co
n
stru

ct
a
n
eÆ

cien
t
sim

p
licia

l
m
esh

,
g
ro
u
p
ed

in
to

p
a
tch

es
ea
ch

co
n
ta
in
in
g
few

sim
p
lices,

su
ch

th
a
t
th
e

b
o
u
n
d
a
ry

fa
cets

o
f
ea
ch

p
a
tch

a
re

a
s
clo

se
a
s
p
o
ssib

le
to

th
e
co
n
e
co
n
stra

in
t
w
ith

o
u
t
v
io
la
tin

g
it.

P
re
v
io
u
s
R
e
su
lts

M
o
st

p
rev

io
u
s
sp
a
ce-tim

e
m
esh

in
g
a
lg
o
rith

m
s
co
n
-

stru
ct

a
sin

g
le

m
esh

lay
er

b
etw

een
tw
o
sp
a
ce-p

a
ra
llel

p
la
n
es

a
n
d

rep
ea
t
th
is

lay
er

(o
r
its

re
ectio

n
)
a
t

reg
u
la
r
in
terva

ls
to

�
ll
th
e
sim

u
la
tio

n
d
o
m
a
in
.

T
h
e

ex
a
ct

co
n
stru

ctio
n
m
eth

o
d
d
ep
en
d
s
o
n
th
e
ty
p
e
o
f
u
n
-

d
erly

in
g
sp
a
ce

m
esh

.
F
o
r
ex
a
m
p
le,

g
iv
en

a
stru

ctu
red

q
u
a
d
sp
a
ce

m
esh

,
th
e
sp
a
ce-tim

e
m
esh

in
g
a
lg
o
rith

m
o
f
L
ow

rie
et

a
l.
[9
]
co
n
stru

cts
a
lay

er
o
f
p
y
ra
m
id
s
a
n
d

tetra
h
ed
ra
.

S
im

ila
rly,

�U
n
g
�o
r
et

a
l.
[1
8
,
2
1
]
b
u
ild

a
sin

g
le
lay

er
o
f
tetra

h
ed
ra

a
n
d
p
y
ra
m
id
s
ov
er

a
n
a
cu
te

tria
n
g
u
la
r
m
esh

,
a
n
d
S
h
e�
er

et
a
l.
[1
4
,
2
1
]
d
escrib

e
a
n
a
lg
o
rith

m
to

b
u
ild

a
sin

g
le
lay

er
o
f
h
ex
a
h
ed
ra

ov
er

a
n
y
(u
n
stru

ctu
red

)
q
u
a
d
m
esh

.
A
ll
su
ch

lay
er-b

a
sed

a
p
p
ro
a
ch
es

su
�
er

fro
m

a
g
lo
b
a
l
tim

e
step

im
p
o
sed

b
y

th
e
sm

a
llest

elem
en
t
in

th
e
u
n
d
erly

in
g
sp
a
ce

m
esh

.
T
h
is

req
u
irem

en
t
in
crea

ses
th
e
n
u
m
b
er

o
f
elem

en
ts

in
th
e
m
esh

,
m
a
k
in
g
th
e
D
G

m
eth

o
d
less

eÆ
cien

t;
it

a
lso

in
crea

ses
th
e
n
u
m
erica

l
erro

r
o
f
th
e
so
lu
tio

n
,

sin
ce

m
a
n
y
in
tern

a
l
fa
cets

m
u
st
lie

sig
n
i�
ca
n
tly

b
elow

th
e
co
n
stra

in
t
co
n
e.

A
few

recen
t
a
lg
o
rith

m
s
d
o
n
o
t
im

p
o
se

a
g
lo
b
a
l
tim

e
step

,
b
u
t
in
stea

d
a
llow

s
th
e
d
u
ra
tio

n
s
o
f
sp
a
ce-tim

e
elem

en
ts

to
d
ep
en
d

o
n

th
e
size

o
f
th
e
u
n
d
erly

in
g

elem
en
ts

o
f
th
e
g
ro
u
n
d
m
esh

.
T
h
e
�
rst

su
ch

a
lg
o
-

rith
m
,
d
u
e
to

�U
n
g
�o
r
et

a
l.
[2
0
],
b
u
ild

s
a
tria

n
g
u
la
r

m
esh

fo
r
a
(1

+
1
)-d

im
en
sio

n
a
l
sp
a
ce-tim

e
d
o
m
a
in

b
y

in
tersectin

g
th
e
co
n
stra

in
t
co
n
es

a
t
n
eig

h
b
o
rin

g
n
o
d
es.

T
h
is

m
eth

o
d

d
o
es

n
o
t
ea
sily

g
en
era

lize
to

h
ig
h
er

d
im

en
sio

n
s.

T
h
e
m
o
st

g
en
era

l
sp
a
ce-tim

e
m
esh

in
g

a
lg
o
rith

m
to

d
a
te

is
th
e
`T
en
t
P
itch

er'
a
lg
o
rith

m
o
f

�U
n
g
�o
r
a
n
d
S
h
e�
er

[1
9
].
G
iv
en

a
sim

p
licia

l
sp
a
ce

m
esh

in
a
n
y
�
x
ed

d
im

en
sio

n
,
w
h
ere

ev
ery

d
ih
ed
ra
l
a
n
g
le

is
strictly

less
th
a
n
9
0
Æ,
T
en
t
P
itch

er
co
n
stru

cts
a
sp
a
ce-

tim
e
m
esh

o
f
a
rb
itra

ry
d
u
ra
tio

n
.
M
o
reov

er,
if
ev
ery

d
ih
ed
ra
l
a
n
g
le

in
th
e
sp
a
ce

m
esh

is
la
rg
er

th
a
n
so
m
e

p
o
sitiv

e
co
n
sta

n
t,
ea
ch

p
a
tch

in
th
e
sp
a
ce-tim

e
m
esh

co
n
sists

o
f
a
co
n
sta

n
t
n
u
m
b
er

o
f
sim

p
lices.

U
n
fo
rtu

n
a
tely,

th
e
a
cu
te

sim
p
licia

l
sp
a
ce

m
esh

es
th
a
t

T
en
t
P
itch

er
req

u
ires

a
re

d
iÆ

cu
lt

to
co
n
stru

ct,
if

n
o
t
im

p
o
ssib

le,
ex
cep

t
in

a
few

sp
ecia

l
ca
ses.

B
ern

et
a
l.
[2
]
d
escrib

e
tw
o
m
eth

o
d
s
fo
r
b
u
ild

in
g
a
n
a
cu
te

tria
n
g
u
la
r
m
esh

fo
r
a
n
a
rb
itra

ry
p
la
n
a
r
p
o
in
t
set,

a
n
d

m
eth

o
d
s
a
re

k
n
ow

n
fo
r
sp
ecia

l
p
la
n
a
r
d
o
m
a
in
s
su
ch

a
s
tria

n
g
les

[1
1
],
sq
u
a
res

[3
,
7
],
a
n
d
so
m
e
cla

sses
o
f

p
o
ly
g
o
n
s
[8
,
1
0
].

H
ow

ev
er,

n
o
m
eth

o
d
is

k
n
ow

n
fo
r

g
en
era

l
p
la
n
a
r
d
o
m
a
in
s
o
r
ev
en

fo
r
p
o
in
t
sets

in
h
ig
h
er

d
im

en
sio

n
s.

It
is
a
n
o
p
en

p
ro
b
lem

w
h
eth

er
th
e
cu
b
e

h
a
s
a
n
a
cu
te

tria
n
g
u
la
tio

n
;
see

[1
7
]
fo
r
recen

t
rela

ted
resu

lts.



New Results

In this paper, we present a generalization of the Tent
Pitcher algorithm that extends any simplicial space
mesh in IRd, for any d � 1, into a space-time mesh of
arbitrary duration. Like the Tent Pitcher algorithm,
our algorithm does not rely on a single global time
step. Our algorithm avoids the requirement of an
acute ground mesh by carefully adapting the duration
of space-time elements to the quality of the underlying
simplices in the space mesh.

3. THE ADVANCING FRONT

Our algorithm is designed as an advancing front
procedure, which alternately constructs a patch of the
mesh and invokes a space-time discontinuous Galerkin
method to compute the solution within that patch.
To simplify the algorithm description, we assume that
the wave speed is constant throughout space-time;
speci�cally, by choosing an appropriate time scale,
we will assume that c(p̂) = 1 everywhere. Our
algorithm can be easily adapted to handle changing
wave speeds, provided the wave speed at any point
is a non-increasing function of time. We discuss the
necessary changes for non-constant wave speeds at the
end of Section 5.

The input to our algorithm is a simplicial ground

mesh M of some spatial domain X � IRd, with the
appropriate initial conditions stored at every element.
The advancing front M̂ is the graph of a continuous
time function t : X ! IR whose restriction to any
element of the ground mesh is linear. At any stage
of our algorithm, each element of the front satis�es
the cone constraint krtk � 1. We will assume the
initial time function is constant, but more general
initial conditions are also permitted.

To advance the front, our algorithm chooses a vertex
that is a local minimum with respect to time, that
is, a vertex p̂ = (p; t(p)) such that t(p) � t(q) for
every neighboring vertex q̂. (Initially, every vertex on
the front is a local minimum.) To obtain the new
front, this vertex is moved forward in time to a new
point p̂0 = (p; t0(p)) with t0(p) > t(p). We call the
volume between the the old and new fronts a tent.
The elements adjacent to p̂ on the old front make
up the inow boundary of the tent; the corresponding
elements on the new front comprise the patch's outow
boundary. We decompose the tent into a patch of
simplicial elements, all containing the common edge
p̂p̂0, and pass this patch, along with the physical
parameters at its inow boundary, to a DG solver.
The solver returns the physical parameters for the
outow boundary, which we store for use as future
inow data. The solution parameters in the interior
and inow boundary of the tent can than be written to

Figure 3. Pitching a series of tents over a planar triangulation.

a �le (for later analysis or visualization) and discarded.
This advancing step is repeated until every node on the
front passes some target time value.

If the front has several local minima, we could apply
any number of heuristics for choosing one; �Ung�or
and She�er outline several possibilities [19]. The
correctness of our algorithm does not depend on which
local minimum is chosen. In particular, if any vertex
has the same time value as one of its neighbors, we
can break the tie arbitrarily. Our implementation
computes the mesh in phases. In each phase, we
select a maximal independent set S of local minima
and then lift each minimum in S, in some arbitrary
order. This approach seems particularly amenable to
parallelization, since the minima in S can be treated
simultaneously by separate processors.



4. PITCHING JUST ONE TRIANGLE

To complete the description of our algorithm, it
remains only to describe how to compute the new time
value for each vertex to be advanced, or less formally,
how high to pitch each tent. We �rst consider the
special case where the ground mesh consists of a single
triangle. As we will show in the next section, this
special case embodies all the diÆculties of space-time
meshing over general planar domains.

Let p; q; r be three points in the plane. At any stage of
our algorithm, the advancing front consists of a single
triangle 4p̂q̂r̂ whose vertices have time coordinates
t(p); t(q); t(r). Suppose without loss of generality that
t(p) � t(q) � t(r) and we want to advance p̂ forward
in time. We must choose the new time value t0(p)
so that the resulting triangle 4p̂0q̂r̂ satis�es the cone
constraint krtk � 1.

To simplify the derivation, suppose q = (0; 0) and
t(q) = 0. The time values t0(p) and t(r) can then
be written as t0(p) = p � rt and t(r) = r � rt, where
rt is the gradient of the new time function. We can
write this gradient vector as

rt = ��v + ��n;

where �v is the unit vector parallel to the vector r with
sign chosen so that �v � p � 0, and �n is the unit vector
orthogonal to �v with sign chosen so that �n � p > 0.
The vector ��v is just the gradient of the time function
restricted to segment qr, so � = t(r)=krk. The cone
constraint implies that krtk =

p
�2 + �2 � 1 and

therefore � �
p
1� �2. Thus, the cone constraint is

equivalent to the following inequality:

t0(p) = p � rt

= �p � �v + �p � �n

� �p � �v +
p
1 � �2 p � �n

=
t(r)

krk
p � �v +

p
krk2 � t(r)2

krk
p � �n

=
t(r)

krk2
jp � rj+

p
krk2 � t(r)2

krk2
jp� rj

Here, p� r denotes the two-dimensional cross product
p1r2 � p2r1, which is just twice the signed area of
4pqr. To simplify the notation slightly, let wp denote
the distance from p to  !qr, and de�ne wq and wr
analogously:

wp =
2j4pqrj

kr � qk
; wq =

2j4pqrj

kp� rk
; wr =

2j4pqrj

kq � pk
:

Then the previous inequality can be rewritten as

t0(p) �
t(r)

krk2
jp � rj+

p
krk2 � t(r)2

krk
wp: (1)

More generally, if q 6= (0; 0) and t(q) 6= 0, the cone
constraint is equivalent to the following inequality.

t0(p) � t(q) +
t(r)� t(q)

kr � qk2
j(p� q) � (r � q)j

+

p
kr � qk2 � (t(r)� t(q))2

kr � qk
wp

(2)

This inequality limits how far forward in time the
lowest vertex can be moved past the middle vertex.
We will refer to this inequality as the cone constraint.

To ensure that our algorithm can create a mesh up
to any desired time value, we must also maintain the
following progress invariant :

The lowest vertex of 4p̂q̂r̂ can always
be lifted above the middle vertex without
violating the cone constraint.

This invariant holds trivially at the beginning of the
algorithm, when t(p) = t(q) = t(r) = 0. Let us
assume inductively that it holds at the moment we
want to lift p̂. �Ung�or and She�er [19] proved that
if 4pqr is acute, then satisfying the cone constraint
automatically maintains this invariant, but for obtuse
triangles, this is not enough. Speci�cally, for an obtuse
triangle 4pqr (see Figure 4) lifting the lowest vertex
p monotonically increases the slope of the triangle, if
initially rt � �n � 0. In such a case it is not possible to
lift p without violating the cone constraint if krtk is
already equal to 1.

’t
t

p

r

q

Figure 4. Lifting the lowest vertex p monotonically increases
the slope of the triangle from krtk to krt0k.

To maintain our progress invariant, it suÆces to ensure
that in the next step of the algorithm, the new lowest
vertex q̂ can be lifted above r̂ without violating the
cone constraint. In other words, if we replace t(q) with
t(r), the new triangle's slope must be strictly less than
1. By substituting t(r) for t(q) in the cone constraint
(2) and making the inequality strict, we obtain the
following:

t0(p) < t(r) + wp (3)

This inequality limits how far forward in time the
lowest vertex can be moved past the highest vertex.
We will refer to this inequality as the weak progress

constraint.



The weak progress constraint has a simple geometric
interpretation, which we can see by looking at the
lifted triangle in space-time; see Figure 5. Let � be
the cone of dependence of the lifted point p̂0; this cone
intersects the plane t = t(r) in a circle  of radius
t0(p)� t(r). Any plane � through p̂0 that satis�es the
cone constraint is disjoint from �; in particular, the
intersection line of � with the plane t = t(r) does not
cross . Now let q̂0 = (q; t(r)). If the plane p̂0q̂0r̂
satis�es the cone constraint, then the line through q̂0

and r̂ does not cross . Thus, the progress invariant
holds after we lift p̂ only if t0(p)� t(r) < wp.

pq

r

p

γw

t (p)−t(r)’

Figure 5. If the circle around p does not touch the line through
q and r, then q̂ can be lifted above r̂ in the next step.

Our algorithm lifts p̂ to some point p̂0 that satis�es
both the cone constraint and the weak progress con-
straint, where t0(p) > t(q). By the progress invariant,
this does not violate the cone constraint. If t0(p) �
t(r), then the weak progress constraint implies that
the progress invariant still holds. If t0(p) < t(r),
then the progress invariant also still holds, because
t(r) � t0(p) < t(r) � t(q). Thus, by induction, the
progress invariant is maintained at every step of our
algorithm.

Unfortunately, the weak progress constraint does not
guarantee that we can reach any desired time value;
in principle, the advancing front could converge to
some �nite limit. To guarantee signi�cant progress at
every step of the algorithm, we need a slightly stronger
constraint. Our implementation uses the inequality

t0(p) � t(r) + (1� ")wp (4)

where " is a �xed constant in the range 0 < " � 1=2.
We will refer to this inequality as the progress con-

straint.

With this stronger constraint in place, we have the
following result.

Lemma 1. If the cone constraint and progress con-

straint hold beforehand, we can lift p̂ at least "wp
above q̂ without violating either constraint.

Proof: Without loss of generality, assume that q =
(0; 0) and t(q) = 0. We want to prove that setting
t0(p) = "wp does not violate the cone constraint (in
its simpler form (1)) or the progress constraint (4).
Recall our assumption that t(r) � t(q) = 0. Because
" � 1=2, we have

t0(p) = "wp � (1� ")wp � t(r) + (1� ")wp;

so the progress constraint is satis�ed. The previous
progress constraint implies that t(r) � (1� ")wr.
Because " > 0 and wr � krk = kr � qk, we have

t(r)2 � (1� ")2w2

r � (1� "2)krk2;

which implies that

" �

p
krk2 � t(r)2

krk
:

Finally, because t(r) � 0, we have

t0(p) = "wp �

p
krk2 � t(r)2

krk
wp

�
t(r)

krk2
jp � rj+

p
krk2 � t(r)2

krk
wp:

Thus, the cone constraint is also satis�ed. �

Theorem 2. Given any three points p; q; r 2 IR2, any

real value T > 0, and any constant 0 < " � 1=2, our
algorithm generates a tetrahedral mesh of the prism

4pqr � [0; T ], where every internal facet satis�es the

cone constraint. The number of tetrahedra is at most

TP=2A" + 3, where P is the perimeter and A is the

area of 4pqr.

Proof: Our algorithm repeatedly lifts the lowest ver-
tex of 4p̂q̂r̂ to the largest time value satisfying the
cone constraint (2), the progress constraint (4), and
a termination constraint t � T . Each time we lift a
point, our algorithm creates a new tetrahedron. By
Lemma 1, a new point becomes the lowest vertex,
so the algorithm halts only when all three vertices
reach the target plane t = T . Moreover, whenever
t(p) � t(q) � t(r), the algorithm chooses a new
time value t0(p) � t(q) + "wp � t(p) + "wp, except
possibly when t0(p) = T . Thus, p̂ is lifted at most
dT="wpe = dTkq�rk=2A"e times before the algorithm
terminates. �

5. ARBITRARY PLANAR DOMAINS

We now extend our meshing algorithm to more com-
plex planar domains. The input is a triangular ground
mesh M of some planar domain X. As we described
in Section 3, our algorithm maintains a polyhedral



front M̂ with a lifted vertex p̂ = (p; t(p)) for every
vertex p 2M . To advance the front, our algorithm
chooses a local minimum vertex p̂ and lifts it to a new
point p̂0 = (p; t0(p)).

The new time value t0(p) is simply the largest value
that satis�es the cone constraints and progress con-
straints for every triangle in the ground mesh that
contains p. The chosen time value t0(p) is the value
that would be chosen by at least one of these triangles
in isolation. It follows that p̂0 is not a local minimum
in the modi�ed front. Moreover, by our earlier
arguments, the progress invariant is maintained in
every triangle adjacent to p. It follows immediately
that our algorithm can generate meshes to any desired
time value.

Speci�cally, let !p denote the minimum distance
from p to !qr, over all triangles 4pqr in the ground
mesh. Lemma 1 implies the following result.

Theorem 3. Given any triangular mesh M over any

domain X � IR2, any real value T > 0, and any

constant 0 < " � 1=2, our algorithm generates a space-

time mesh for the domain X � [0; T ]. The number of

patches is at most
P

p2M
dT=("!p)e, and number of

tetrahedra is at most 6
P

p2M
dT=("!p)e.

Our analysis of the number of patches and elements
is conservative, since it assumes that each step of the
algorithm advances a vertex by the minimum amount
guaranteed by Lemma 1. We expect most advances to
be larger in practice, especially in areas of the ground
mesh without large angles. Our experiments were
consistent with this intuition; see Section 7.

Most of the parameters of the cone constraint, and
all of the parameters of the progress constraint, can
be computed in advance from the ground mesh alone.
Thus, the time to compute each new time value t0(p)
is a small constant times the degree of p in the ground
mesh, and the overall time required to build the mesh
is a small constant times the number of mesh elements.

Non-constant Wave Speeds

Although we have described our algorithm under the
assumption that the wave function c(p̂) is constant,
this assumption is not necessary. If elements of the
ground mesh have di�erent (but still constant) wave
speeds, our algorithm requires only trivial modi�-
cations. The situation �ts well with discontinuous
Galerkin methods, which compute solutions with dis-
continuities at element boundaries. If the wave speed
varies within a single element, even discontinuously,
the only necessary modi�cation is to compute and use
the maximum wave speed over each entire element.

Similar modi�cations suÆce if the wave speed at any
point in space can decrease over time.

If the mesh has only acute angles, the progress
constraint is redundant and arguments of �Ung�or and
She�er [19] imply that our algorithm works even if the
wave speed can increase over time, as long as the wave
speed is Lipschitz continuous. Unfortunately, their
analysis breaks down for obtuse meshes because of the
progress constraint, and indeed our algorithm can get
stuck. We expect that a re�nement of our progress
constraint would allow for increasing wave speeds, but
further study is required.

6. HIGHER DIMENSIONS

Our meshing algorithm extends in an inductive man-
ner to simplicial meshes in higher dimensions. As in
the two-dimensional case, it suÆces to consider the
case where the ground mesh consists of a single simplex
4 in IRd. At each step of our algorithm, we increase
the time value of the lowest of the simplex's d + 1
vertices as much as possible so that the cone constraint
krtk � 1 is satis�ed and we can continue inductively
as far into the future as we like.

Let p; q; r1; r2; : : : ; rd�1 denote the vertices of 4 in
increasing time order, breaking ties arbitrarily. Our
goal is to lift p̂ above q̂ without violating the cone
constraint. Let F be the facet of 4 that excludes p,
and let H be the hyperplane spanning F . Let p

H
be

the projection of p onto H, and let p
F
be the closest

point in F to p. Observe that \pp
H
p
F
is a right angle.

See Figure 6. Let r
H
t denote the gradient vector of

the time function restricted to H. Finally, de�ne

�
F
=
kp� p

H
k

kp� p
F
k
:

If p
H
lies inside F , then p

H
= p

F
and �

F
= 1; otherwise,

p
H
6= p

F
and �

F
= sin\p

H
p
F
p.

pZ

pH

∇ H t

p

q=pF

r1

r2

F

HZ

Figure 6. De�ning the points p
H
, p
F
, and p

Z

The higher-dimensional analogue of the weak progress
constraint is described by the following lemma.

Lemma 4. If kr
H
tk < �

F
, then we can lift p̂ above q̂

without violating the cone constraint krtk � 1.



Proof: Suppose kr
H
tk < �

F
. Without loss of gener-

ality, assume that q = (0; 0; : : : ; 0) and t(q) = 0. Let
�n be the unit normal vector of H with p � �n > 0,

�n =
p� p

H

kp� p
H
k
:

Since the time function t is linear, changing only t(p) is
equivalent to leaving t �xed on the hyperplane H and
changing the directional derivative @t=@�n. To prove
the lemma, we show that setting

@t

@�n
= cos\p

H
p
F
p =
kp
H
� p

F
k

kp� p
F
k

(5)

gives us a new time function that satis�es the cone
constraint with t(p) > 0.

Let Z be the set of points in H where t = 0. Since
t(q) = 0, Z is the (d� 2)-at orthogonal to r

H
t that

passes through q. Moreover, because t � 0 everywhere
in F , Z is a supporting (d�2)-at of F . Let p

Z
be the

closest point in Z to p (or to p
H
); this might be the

same point as p
F
, p
H
, or q. Observe that \pp

H
p
Z
is a

right angle. See Figure 6.

We can express the time gradient rt as follows:

rt = r
H
t+

@t

@�n
�n:

Equation (5) implies that

rt = r
H
t+
kp
H
� p

F
k

kp� p
F
k
�n:

Since these two components of rt are orthogonal, we
can express its length as follows.

krtk2 = kr
H
tk2 +

kp
H
� p

F
k2

kp� p
F
k2

<
kp� p

H
k2

kp� p
F
k2

+
kp
H
� p

F
k2

kp� p
F
k2

= 1

So the new time function satis�es the cone constraint.

We can express the time value t(p) as follows:

t(p) = t(p
H
) + kp� p

H
k
@t

@�n

= t(p
H
) +
kp� p

H
k kp

H
� p

F
k

kp� p
F
k

If t(p
H
) � 0, then clearly t(p) > 0. Suppose t(p

H
) < 0.

The vector p
H
� p

Z
is orthogonal to Z and therefore

anti-parallel to r
H
t. Thus,

t(p
H
) = r

H
t � (p

H
� p

Z
)

= �kr
H
tk kp

H
� p

Z
k

� �
kp� p

H
k kp

H
� p

Z
k

kp� p
F
k

� �
kp� p

H
k kp

H
� p

F
k

kp� p
F
k

:

The last inequality follows from the fact that p
H
and F

lie on opposite sides of Z, because t(p
H
) < 0. It now

immediately follows that t(p) > 0. �

As in the two-dimensional case, in order to guarantee
that the algorithm does not converge prematurely,
we must strengthen this constraint. There are many
e�ective ways to do this; the following lemma describes
one such method.

Lemma 5. For any 0 < " � 1, if kr
H
tk � (1� ")�

F
,

then we can lift p̂ at least "kp� p
H
k above q̂ without

violating the cone constraint krtk � 1.

Proof: We modify the previous proof as follows. We
show that setting

@t

@�n
= "+ (1� ")

kp
H
� p

F
k

kp� p
F
k

gives us a new time function satisfying the conditions
of the lemma. First we verify that the cone constraint
is satis�ed.

krtk2 �

�
(1� ")

kp� p
H
k

kp� p
F
k

�
2

+

�
"+ (1� ")

kp
H
� p

F
k

kp� p
F
k

�
2

= 1 + 2"(1� ")

�
kp
H
� p

F
k

kp� p
F
k
� 1

�

� 1

(In fact, if p
H
6= p

F
, then krtk < 1, which means we

could lift p̂ even more.)

Next we verify that t(p) � "kp� p
H
k.

t(p) = t(p
H
) + kp� p

H
k
@t

@�n

= t(p
H
) + "kp� p

H
k+ (1� ")

kp� p
H
k kp

H
� p

F
k

kp� p
F
k

� t(p
H
) + "kp� p

H
k:

If t(p
H
) � 0, we are done. Otherwise, as in the previous

lemma, we have

t(p
H
) � �kr

H
tk kp

H
� p

F
k

� �(1� ")
kp� p

H
k kp

H
� p

F
k

kp� p
F
k

;

which immediately implies that t(p) � "kp � p
H
k, as

claimed. �

An important insight is that we can view the simplex
4 simultaneously as a single d-dimensional simplex
and as (d� 1)-dimensional boundary mesh. Lemma 5
prescribes a tighter cone constraint for every element
in this boundary mesh.



Our algorithm proceeds as follows. At each step, we
lift the lowest vertex of 4 by recursively applying the
(d � 1)-dimensional algorithm; then, if necessary, we
lower the newly-lifted vertex to satisfy the global cone
constraint krtk � 1. The base case of the dimensional
recursion is the two-dimensional algorithm in the
previous section.

This recursion imposes an upper bound on the length
of the time gradient within every face of 4 of dimen-
sion at least 1. In fact, a na��ve recursive implementa-
tion would calculate (d � k)! di�erent constraints for
each k-dimensional face. A more careful implementa-
tion would determine the strictest constraint for each
face in an initialization phase, so that each step of the
algorithm only needs to consider each face incident to
the lifted vertex once.

For a d-dimensional ground mesh with more than one
simplex, we apply precisely the same strategy as in the
two-dimensional case. At each step of the algorithm,
we choose an arbitrary local minimum vertex p̂, and
lift it to the highest time point p̂0 allowed by all
the simplices (of all dimensions) containing p̂. By
our earlier arguments, p̂0 is not a local minimum of
the modi�ed front, which implies that our algorithm
terminates only when all the vertices reach the target
time value.

7. OUTPUT EXAMPLES

We have implemented our planar space-time meshing
algorithm and tested it on several di�erent ground
meshes. Our implementation consists of approxi-
mately 5000 lines of C++ code, about 800 of which
represent the actual space-time meshing algorithm;
the remaining code is a pre-existing library for ma-
nipulating and visualizing triangular and tetrahedral
meshes.

Figures 1 and 7{9 show space-time meshes computed
by our implementation. In each case, we stopped
advancing each vertex of the front after it passed a
target time value. In every example, the input triangle
mesh contains at least one (sometimes extremely)
obtuse triangle, which caused �Ung�or and She�er's
original Tent Pitcher algorithm to fail [19].

Our program produces several thousand elements per
second, running on a 1.7 GHz Pentium IV with
1 gigabyte of memory. For example, the mesh in
Figure 1, which contains 114,515 tetrahedral elements,
was built from a ground mesh of 2,356 triangles in
about 14 seconds. Figure 7 shows an input mesh with
1,044 triangles and the resulting 55,020-element space-
time mesh, which was computed in about 4 seconds.
(These running times include reading and parsing the
input mesh �le and writing the output mesh to disk.)

(a)

(b)

Figure 7. (a) A typical planar mesh of 1044 triangles. (b) The
resulting space-time mesh of 55,020 tetrahedra, computed by
our implementation in about 4 seconds.

Figure 8 illustrates e�ect of grading in the input mesh
on the size on space-time elements. The largest and
smallest elements in the ground mesh di�er in size by
a factor of 128; the resulting space-time elements di�er
in duration by a factor of 450. (The di�erence between
these two factors might be explained by the obtuse
triangles near the smallest element of the ground
mesh.) Less severe grading due to varying ground
element size can also be seen in Figure 7.

Figure 9 shows the output of our algorithm when the
input mesh is pathological. The input meshes are
the Delaunay triangulation and a greedy sweep-line
triangulation of the same point set. As expected,
variations in quality in the ground mesh also leads to
temporal grading in our output meshes. For example,
the bottom right vertex of the space mesh in Figure
9(b) advances much more quickly than the top right
vertex, because it is signi�cantly further from the lines
through any of its neighboring edges.

We tried several di�erent values of the parameter "
in the progress constraint (4). All of the example
output meshes were computed using the value " � 0:1.
Somewhat to our surprise, the number of elements
in the output mesh varied by only a few percent as
we varied " from 1=100 to 1=3, and smaller values



(a)

(b)

(c)

Figure 8. (a) A severely graded planar mesh. (b) The resulting
space-time mesh. (c) A close-up of the resulting grading.

of " usually resulted in meshes with slightly fewer

elements, since the modi�ed progress constraint is less
severe. Also, for high-quality ground meshes, where
most of the triangles are acute, the progress constraint
a�ected only a few isolated portions of the space-
time mesh. On the other hand, smaller values of "
generally led to wider variability in the duration of
neighboring tetrahedra. As " increases, the progress
guaranteed by Lemma 1 more closely matches the
maximum progress allowed by the progress constraint;
this tends to distribute the progress of each triangle
more evenly among its vertices.

8. FURTHER RESEARCH

We have presented the �rst algorithm to generate
graded space-time meshes for arbitrary spatial do-
mains, suitable for eÆcient use by space-time dis-
continuous Galerkin methods. This is only the �rst
step toward building a general space-time DG meshing
library.

As we mentioned in Section 5, our algorithm currently
requires the wave speed at any point in space to remain
constant or monotonically decrease over time. In the
short term, we plan to adapt our algorithm to handle
wave speeds that increase over time. It should be
noted that for many problems, the wave speed is not
known in advance but must be computed on the y as
part of the numerical solution.

DG methods do not require conforming meshes, where
any pair of adjacent elements meet in a common face.
As a result, �xed time-step methods allow the space
mesh to be re�ned or coarsened in response to error
estimates, simply by remeshing at any time slice.
Can our advancing front method be modi�ed to allow
for re�nement, coarsening, or other local remeshing
operations (like Delaunay ips)? These operations
might be useful not only to avoid numerical error, but
also to make the meshing process itself more eÆcient.

For many problems, even the boundary of the domain
changes over time according to the underlying system
of PDEs. Can our method be adapted to handle
moving boundaries? Intuitively, we would like a mesh
that conforms to the boundary as it moves. This
would require us to move the nodes of the ground mesh
continuously over time; remeshing operations would be
required to guarantee that the meshing algorithm does
not get stuck. Similar issues arise in tracking shocks,
which are surfaces in space-time where the solution
changes discontinuously.

Our method currently assumes that all the charac-
teristic cone have vertical (or at least parallel) axes.
For problems involving uid ow, the direction of the
cone axis (i.e., the velocity of the material) varies
over space-time as part of the solution. We could



(a) (b)

(c) (d)

Figure 9. (a) A Delaunay triangulation with a few bad triangles. (b) A sweep-line triangulation (of the same point set) with many
horrible triangles. (c,d) The resulting space-time meshes, showing the resulting temporal grading.

adapt our method to this setting by overestimating
the true tilted inuence cones by larger parallel cones,
but intuitively it seems more eÆcient to move nodes
on the front. As in the case of moving boundaries, this
would require remeshing the front. In fact, the front
would no longer necessarily be a monotone polyhedral
surface; extra work may be required to ensure that the
resulting mesh is acyclic.

Finally, to minimize numerical error it is important to
generate space-time meshes of high quality. Although
there are several possible measures for the quality of
a space-time element, further mathematical analysis
of space-time DG methods is required to determine
the most useful quality measures. This is in stark
contrast to the traditional setting, where appropriate
measures of quality and algorithms to compute high-
quality meshes are well known [1, 2, 4, 13, 15].
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